
Technical Data Hydraulic crawler crane

Basic machine with undercarriage

Dimensions	mm		mm
	2000		the transfer to the own
A Width of superstructure	3000	X Distance from centre of rotat	tion to end of cab 2750
A ₁ Width of superstructure with walk way	3440		TOO 500 000 1000
C Height of basic machine	3250	N Width of track shoes	700 800 900 1000
D. Mallace at	4000	W ₁ Track width retracted	2400 2400 2600 2600
D Tail reach	4230	W Track width extended	3850 3850 3850 3850
Tail swing radius	4260		
D1 Tail reach A-frame	4070	B Crawler width extended	4550 4650 4750 4850
		B ₁ Crawler width retracted	3500 3500 3700 3700
F Distance between rear end of crawler and			
outside of counterweight	1320		
		Operating Weight and	Ground
G Overall length of superstructure with		Pressure	
lowered A-frame	11000		
		The operating weights include	
H Ground clearance of boom foot pivot	1740	crawler tracks, 2 main winches	
		consisting of A-frame, boom foo	
K Ground clearance of superstructure	1240	(5.5 m) and 12.3 t counterweigh	it.
L Wheel base (centre idler to centre tumbler)	4800		
L ₁ Distance from centre of rotation to		All systems are ready.	
centre of tumbler	2400		
		with 700 mm flat track shoes	$55.0 \text{ t} - 0.80 \text{ kg/cm}^2$
M Length of crawlers	5760	with 800 mm flat track shoes	$55.6 \text{ t} - 0.71 \text{ kg/cm}^2$
P Height of crawlers	1040	with 900 mm flat track shoes	56.2 t - 0.64 kg/cm ²
Q Ground clearance of crawler	375	with 1000 mm flat track shoes	$56.8 t - 0.58 kg/cm^2$
R Distance from edge of horizontal boom foot		with 700 mm 3-web shoes	$53.0 \text{ t} - 0.77 \text{ kg/cm}^2$
to crawler	3900	with 800 mm 3-web shoes	$53.5 \text{ t} - 0.68 \text{ kg/cm}^2$
S Ground clearance of horizontal boom foot	1130	with 900 mm 3-web shoes	$54.0 \text{ t} - 0.61 \text{ kg/cm}^2$
T Length of superstructure	6980	with 1000 mm 3-web shoes	54.5 t – 0.55 kg/cm ²

*) including stay ropes

Basic machine

with HD undercarriage, without counterweight 12.3 t, L 6 cylinder Liebherr diesel engine, 2 x 20 t winches, A-frame, boom foot section with boom back stops and pulley block with equalizer

3-web shoes	mm	700	800	900	1000
Width	mm	3500	3500	3700	3700
Weight	t	36.8	37.4	37.9	38.4
L Length	mm	11000	11000	11000	11000
H Height	mm	3400	3400	3400	3400

Counterwe	eight	Basic
Width	mm	830
Weight	kg	12300
L Length	mm	3000
H Height	mm	1365

Pulley block with equalizer

Width	mm	480
Weight	kg	300
L Length	mm	1010
H Height	mm	640

A-frame

Width	mm	530
Weight	kg	645
L Length	mm	3825
H Height	mm	1210

Boom foot		Basie
Width	mm	1400
Weight	kg	1280
L Length	mm	5680
H Height	mm	1370

Tubular b	oom extens	sion 3 m	6 m	9 m
Width	mm	1400	1400	1400
Weight*	kg	400	670	850
L Length	mm	3140	6140	9140
H Height	mm	1215	1215	1215

Boom head	ı	Crane	Dragline
Width	mm	1400	1400
Weight*	kg	1315	1400
L Length	mm	5950	6090
H Height	mm	1890	2035

Transport dimensions and weights

Water cooled, in-line 6 cylinder Liebherr diesel engine, turbocharged with intercooler, model D 926 TI-E, power rating according to ISO 9249, 220 kW (300 hp) at 1800 rpm.

Option: * Water cooled, V–8–cylinder Liebherr diesel engine, turbo charged with intercooler, model D 9408 TI-E, power rating according to ISO 9249, 400 kW (544 hp) at 1900 rpm. The automatic limiting load control adapts perfectly the power of the main users to the present engine speed.

The temperature and engine speed controlled cooling system saves energy and reduces the noise emission. Fuel Tank: 800 l capacity with continuous level indicator and reserve warning.

Hydraulic System

The main pumps are operated by a distributor gearbox. Axial piston displacement pumps work in closed and open circuits supplying oil only when needed (flow control on demand). To minimize peak pressure an automatically working pressure cut off is integrated. This spares pumps and saves energy.

Winch 1 and 2: Axial piston displacement pumps (swash plate design) with 324 l/min. each.

Crawlers: Axial piston displacement pumps (swash plate design) with 2 x 296 l/min

Swing gear: Axial piston displacement pump (swash plate design) with 296 l/min.

Boom hoist: Axial piston displacement pump (swash plate design) with 296 l[/]min.

Max. working pressure: 350 bar.

Hydraulie oil tank capacity: 650 l The hydraulic oil is cleaned through electronically controlled pressure and return filters.

Possible contamination is signalled in the cabin. The use of synthetic environmentally friendly oils is possible. Ready made hydraulic retrofit kits are available to customize requirements e.g. powering casing oscillators, auger drills etc

Winch ontions:

Line pull (nom. load) 80 kN 120 kN 160 kN 200 kN 20 mm 24 mm 26 mm Rope diameter : 30 mm Drum diameter : 420 mm 525 mm 630 mm 550 mm Rope speed m/min Rope capacity 46.5m

1st layer 45 m 46 m 46.5 m 46.5s The winches are outstanding in their compact design and easy assembly.

Propulsion is via a planetary gearbox in oil bath. Load support by the hydraulic system; additional safety factor provided by a spring loaded, multi-disc holding brake. Clutch and braking functions on the freefall system are provided by a compact designed, low wear and maintenance free multi-disc brake. The dragline and hoist winches use pressure controlled, variable flow hydraulic motors. This system features sensors that automatically adjust oil

flow to provide max. winch speed depending on load Working with 2 rope clamshell, the oil motors distribute the load to both winches providing speed compensation, even when working in different rope layers.

Crane winch 80 kN (8 t) - without clutch, but with multi-disc holding brake.

$|\widehat{\mathfrak{D}}||$ Noise emission

Special sound proofing results in a very low noise pressure level of 77 dB(A) at 16 m radius.

📥 Equipment

attice boom of tubular construction up to 53 m, universal boom head with interchangeable rope pulleys. Modular designed equipment for operation as crane, dragline or clamshell.

For dragline or earnishers.

For dragline operation, a rotating fairlead is fitted into the boom foot. This minimizes rope angle to drum, which results in lower rope wear. Jibs and fly jibs of different lengths are available on request.

Swing Drive

Consists of single row ballbearing with external teeth for lower tooth flank pressure, fixed axial piston hydraulic motor, spring loaded and hydraulically released multi-disc holding brake, planetary gearbox and pinion.
Free swing with hydraulic moment control reduces wear to a

minimum, because rotation moment is sustained through the hydraulic system by the diesel engine.

A multi-disc holding brake acts automatically at zero swing

Swing speed from 0 - 4.7 rpm continuously variable, selector for 3 speed ranges to increase swing precision.

crawler Crawler

The track width of the undercarriage is changed hydraulically. Propulsion through axial piston motor, hydraulically released spring loaded multi-disc brake, maintenance free rawler tracks hydraulic chain tensioning device Flat or 3 – web track shoes. Drive speed 0 – 1.6 km/h. Ontion:

2 speed hydraulic motor for higher travel speed.

Control

The control system – developed and manufactured by Liebherr – is designed to withstand extreme temperature and the many heavy-duty construction tasks for which this crane has been designed. Complete machine operating data are displayed on a high resolution monitor screen. To ensure clarity of the information on display, different levels of data are shown in enlarged lettering and symbols. Control and monitoring of the sensors are also handled by this high technology system. Error indications are automatically displayed on the monitor in English. The crane is equipped with proportional control for all movements, which can be carried out simultaneously.

A special "Interlock' control system is also optionally available. It is designed for power lifting of the dragline bucket

without using the grab winch brake. An additional option is also the so-called "Redundant" control system, which allows restricted operation of the machine in the event of a failure on the electronic base control or its sensors. On request, Liebherr also offers special custom designed

control systems for free fall winches.

The crane is operated with 2 multi-directional joysticks, right for winch I and boom hoist drive, left for winch II and slewing gear. Crawler control is actuated with the two central foot pedals. Additionally, hand levers can be attached to the pedals.

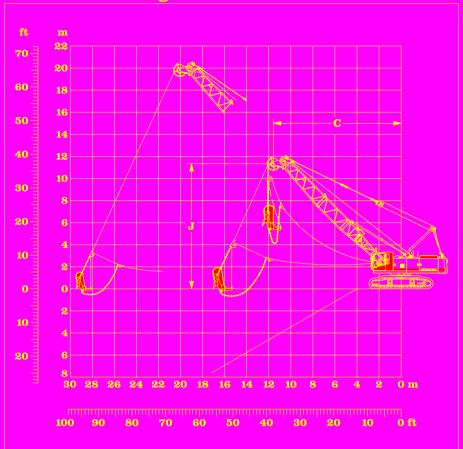
Options:

- Both main winches with double-T levers
- Special demolition control system MDE: Machine data recording
- PDE: Process data recording

Boom hoist drive

Twin drum with internally located planetary gearbox, axial piston hydraulic motor and hydraulically released spring loaded multi-disc brake

Max. line pull 2x 50 kN. Rope diameter: 18 mm


Max. line speed: 45 m/min.

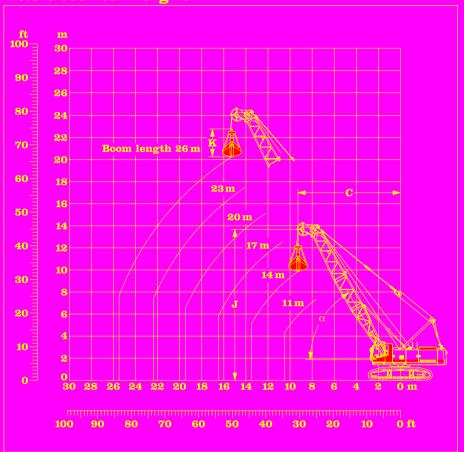
Counterweight lifting with boom hoist.

Two speed boom hoist option

Technical description

12.3 t counterweight

Scope of delivery:


- Basic machine with corresponding track shoes
- Second swing drive with free swing
- A-frame
- Boom foot 5.5 m
- Boom extension 3 m tubular steel
- Boom extension 6 m tubular steel
- Boom extension 9 m tubular steel
- Boom head 5.5 m
- Boom head with interchangeable
- Main winches according to specification
- Drag rope should be 2 mm below nominal diameter
- Corresponding fair lead
- Corresponding ropes optionalDragline bucket optional

Capacities in m	Capacities in metric tons for boom lengths from 14 m to 26 m: Counterweight 12.3														12.3 t
Boom length		14 m		17 m			20 m				23 m		26 m		
	C J			C	C J		C	C J		C J			C J		
$lpha^\circ$	m	m	t	m	m	t	m	m	t	m	m	t	m	m	t
45	12.0	11.1	11.1	14.0	13.2	8.8	16.2	15.3	7.2	18.3	17.4	6.0	20.5	19.6	5.0
40	12.8	10.2	10.2	15.0	12.1	8.1	17.4	14.1	6.6	19.6	16.0	5.5	22.0	17.9	4.5
35	13.5	9.3	9.5	15.9	11.0	7.5	18.4	12.7	6.1	20.8	14.5	5.0	23.3	16.2	4.2
30	14.0	8.3	8.9	16.7	9.8	7.1	19.3	11.3	5.7	21.8	12.8	4.7	24.4	14.3	3.9

Max. capacities in metric tons do not exceed 75 % of tipping load

Dragline equipment

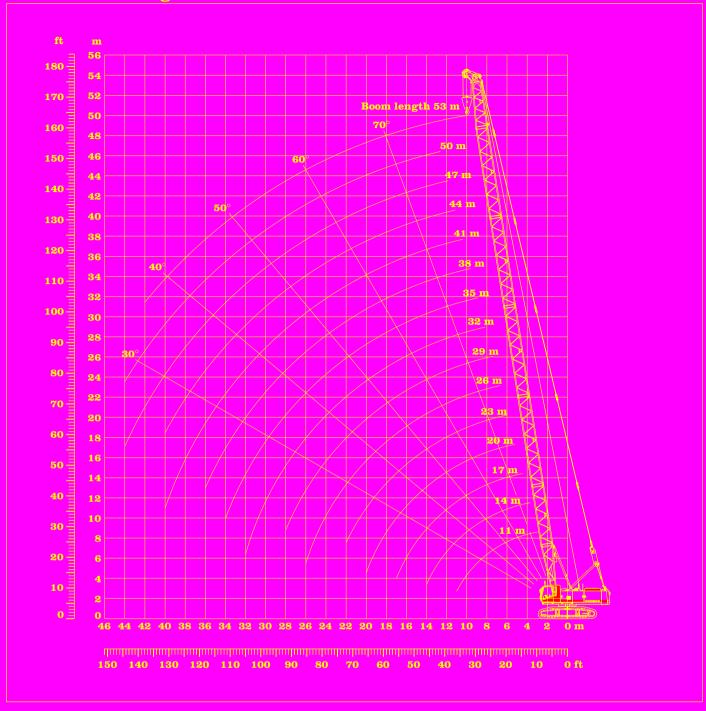
12.3 t counterweight

Scope of delivery:

- Basic machine with corresponding track shoes
- A-frameBoom foot (5.5 m)
- Boom extension 3 m tubular steel
- Boom extension 6 m tubular steel
- Boom extension 9 m tubular steel
- Boom head 5.5 m
 Boom head with interchangeable pulleys
- Stay ropes according to boom length
- Main winches according to specification
- Tagline winch
- Corresponding ropes optional
- Clamshell optional
 Hoist limit switch
- Load moment limitation
- 4-rope clamshell on request

Working diagram

- C = Radius / dumping radius
- J = Height of boom head sheave centre above ground level
- K = Length of clamshell (depending on type and capacity of bucket)


Capacities in	metrio	tons	for b	oom l	ength	s fron	n 11 n	n to 2	6 m:					C	Count	erwei	ght 1	2.3 t	
Boom length		11 m			14 m			17 m			20 m			23 m			26 m		
	C	J		C	J		C	J		C	J		C	J		C	J		
α°	m	m	t	m	m	t	m	m	t	m	m	t	m	m	t	m	m	t	
65	6.8	11.0	21.4	8.1	13.7	16.8	9.3	16.5	13.6	10.6	19.2	11.4	11.9	21.9	9.7	13.1	24.9	8.3	
60	7.6	10.6	18.1	9.1	13.2	14.1	10.6	15.8	11.4	12.7	18.4	9.5	11.9	21.0	8.0	15.1	23.6	6.9	
55	8.4	10.1	15.8	10.1	12.6	12.2	11.8	15.0	9.9	13.6	17.5	8.2	15.3	19.9	6.9	17.0	22.4	5.8	
50	9.1	9.6	14.1	11.1	11.9	10.9	13.0	14.2	8.7	14.9	16.5	7.2	16.8	18.8	6.0	18.8	21.1	5.1	
45	9.8	9.0	12.8	11.9	11.1	9.8	14.0	13.2	7.9	16.2	15.3	6.4	18.3	17.4	5.4	20.4	19.6	4.5	
40	10.4	8.3	11.8	12.7	10.2	9.0	15.5	12.1	7.2	17.3	14.1	5.9	19.6	16.0	4.9	21.9	17.9	4.0	
35	10.9	7.6	11.0	13.4	9.3	8.4	15.9	11.0	6.7	18.3	12.7	5.4	20.8	14.5	4.5	23.2	16.2	3.7	
30	11.4	6.8	10.4	14.0	8.3	7.9	16.6	9.8	6.3	19.2	11.3	5.1	21.8	12.8	4.2	24.4	14.3	3.4	
25	11.8	6.0	9.8	14.5	7.3	7.5	17.2	8.5	5.9	20.0	9.8	4.7	22.7	11.1	3.9	25.4	12.4	3.2	

Max. capacities in metric tons do not exceed 66.7 % of tipping load.

Load diagram restricted	by safety fac	etors of stan	dard ropes:
Winches	120 kN	160 kN	200 kN
Rope diameter	24 mm	26 mm	30 mm
Calc. breaking load	524 kN	613 kN	820 kN
1-rope clamshell	9.5 t	11.1 t	14.8 t
2-rope clamshell	14.1 t	16.8 t	22.5 t

Clamshell equipment

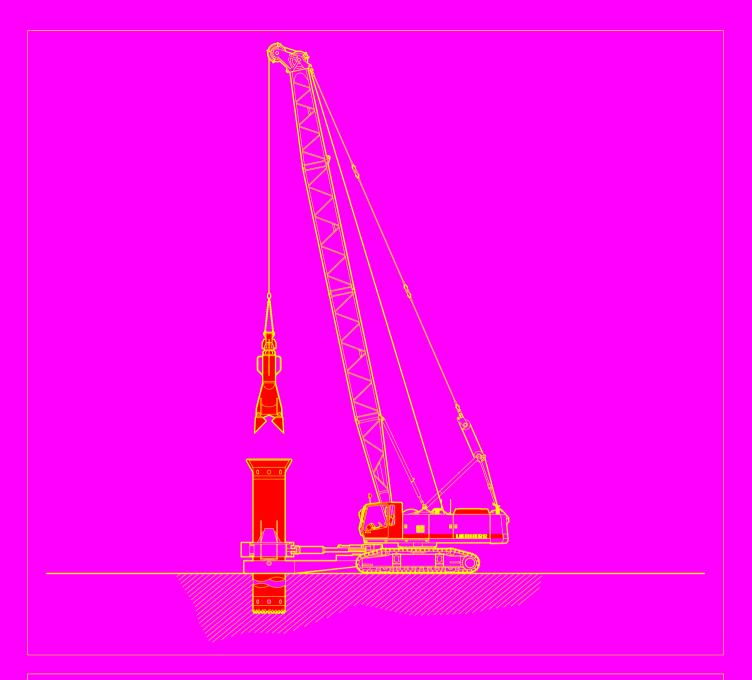
12.3 t counterweight

Scope of delivery:

- Basic machine with corresponding track shoes
- A-frame
- Pulley block
- Boom foot 5.5 m
- Boom extension 3 m tubular steel
- Boom extension 6 m tubular steel
- Boom extension 9 m tubular steel
- Boom head 5.5 m with interchangeable pulleys
- Stay ropes according to boom length Main winches according to specification
- Hoisting limit switch
- Load moment limitation Corresponding hook block optional

Remarks:

- The lifting capacities are valid for wide track. The lifting capacities stated do not exceed 75 % of
- the tipping load.
- The lifting capacities are indicated in metric tons with unlimited swing (360 degrees).
- The weight of the lifting device must be deducted to arrive at the net lifting capacity.
- Working radii are measured from centre of swing.
- Crane standing on firm, horizontal ground. Indicated values on load chart are affected by off-lead operation, wind speeds, load under slew and stop/go movements.


Crane configuration

Capacities in me Boom length		14 m	17 m			26 m			35 m	38 m	41 m	44 m	nterw 47 m	50 m	53 n
Radius in (m)	t	t	t	t t	zo m t	t t	t t	t	t t	t t	t	t	t	t t	t os n
3.5	60.0		•	"			•				<u> </u>	•	•	"	
4	49.9	45.4													
4.5	47.3	43.8	38.6												
5	39.2	39.2	37.4	34.6											
5.5	33.4	33.4	33.4	33.3	31.1	28.8									
6	29.1	29.0	29.0	29.0	28.9	28.0	25.9								
6.5	25.7	25.7	25.6	25.6	25.5	25.4	25.2	23.5							
7	23.0	23.0	22.9	22.9	22.8	22.7	22.6	22.6	21.2						
7.5	20.8	20.8	20.7	20.7	20.6	20.7	20.4	20.4	19.3	17.9					
8	19.0	19.0	18.9	18.8	18.7	18.7	18.6	18.6	18.5	17.5	16.2	14.9			
													11.0	0.4	
9	16.1	16.1	16.0	15.9	15.8	15.7	15.6	15.7	15.6	15.5	15.4	14.2	11.6	9.4	
10	13.9	13.9	13.8	13.8	13.6	13.6	13.5	13.5	13.4	13.3	13.2	13.1	10.6	8.6	7.0
11	12.2	12.2	12.1	12.0	12.0	11.9	11.8	11.8	11.7	11.6	11.5	11.4	9.8	7.9	6.
12		10.9	10.8	10.7	10.6	10.5	10.4	10.4	10.3	10.2	10.1	10.0	9.1	7.3	6.
13		9.8	9.7	9.6	9.5	9.4	9.3	9.3	9.2	9.1	9.0	8.9	8.5	6.9	5.
14		8.8	8.7	8.7	8.6	8.5	8.4	8.4	8.3	8.2	8.1	8.0	7.9	6.5	5.
15			8.0	7.9	7.8	7.7	7.6	7.6	7.5	7.4	7.3	7.2	7.1	6.1	4.
16			7.3	7.2	7.1	7.0	6.9	6.9	6.8	6.7	6.6	6.5	6.4	5.7	4.
17			6.7	6.6	6.5	6.4	6.3	6.3	6.2	6.1	6.0	5.9	5.8	5.4	4.
18				6.1	6.0	5.9	5.8	5.8	5.7	5.6	5.5	5.4	5.3	5.1	4.
19				5.7	5.6	5.5	5.4	5.4	5.3	5.2	5.1	5.0	4.9	4.7	3.
20				5.3	5.2	5.1	5.0	5.0	4.9	4.8	4.7	4.5	4.4	4.3	3.
22					4.5	4.4	4.3	4.3	4.2	4.0	4.0	3.9	3.8	3.6	3.
24						3.8	3.7	3.7	3.6	3.5	3.4	3.3	3.2	3.0	2.
26						3.4	3.2	3.3	3.1	3.0	2.9	2.8	2.7	2.5	2.
28							2.9	2.9	2.7	2.6	2.5	2.4	2.2	2.1	2.
30								2.5	2.4	2.3	2.1	2.0	1.9	1.8	1.
32								2.2	2.1	1.9	1.8	1.7	1.6	1.4	1.
34									1.8	1.7	1.5	1.4	1.3	1.2	1.
36										1.4	1.3	1.2	1.0	0.9	0.
38											1.1	0.9	0.8	0.7	0.
40											0.9	0.8	0.6	0.5	0.
42												0.6	0.5	0.3	0.
44													0.3	0.2	

The necessary hoistrope reeving arrangement has to be provided according to the load diagram in the cabin.

Optimal boom configuration for boom lengths between 11 m and 53 m:																
	Length		Number of boom extensions													
Boom foot	5.5 m	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Boom extension	3.0 m		1			1			1			1			1	
Boom extension	6.0 m			1			1			1			1			1
Boom extension	9.0 m				1	1	1	2	2	2	3	3	3	4	4	4
Boom head	5.5 m	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Boom length		11 m	14 m	17 m	20 m	23 m	26 m	29 m	32 m	35 m	38 m	41 m	44 m	47 m	50 m	53 m

Load diagram for crane configuration

Casing oscillator Free fall winches with maintenance free, spring Winch options 2 x 16 t 2 x 20 t loaded multi-disc brake working in an oil bath. 400 kN Line pull 2 x 320 kN Simultaneous working of both winches is assured through our hydraulic system. Line speed 1st layer (m/min) 0-114 0-92 Hydraulic supply for easing oscillator q = 2 x 296 l/min. Drilling diameter 2000 mm 2000 mm $\bar{P} = 300 \text{ bar max}.$ Mechanical connection casing oscillator on 16 t Chisel weight 12 t undercarriage. Automatic operation for one and two rope grabs. Maximum capacity with boom position in (optional) longitudinal direction of undercarriage Hoisting speed will have priority over the casing 25.2 t at 7.5 m radius. oscillator while main winches are activated.

THEREBOOK WEDT ATTRICTATE CAMPIT

P.O. Box 10, A-6710 Nenzing / Austria / Europe Telephone (0043) 5525 - 606 - 473, Telefax (0043) 5525 - 606 - 499

Email: info@lwn.liebherr.com